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A B S T R A C T

White matter bundle segmentation is a cornerstone of modern tractography to study the brain’s structural
connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present
FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and
easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate
white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be
used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our
proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative
sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of
streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas
of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder
latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles.
Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to
generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically
correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection
methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework
allows for the transition from one anatomical bundle definition to another with marginal calibration efforts.
Overall, these results show that our framework improves the practicality and usability of current state-of-the-art
bundle segmentation framework
1. Introduction

White matter (WM) fiber tractography is a well-established method
for brain connectivity analysis. It is currently the only non-invasive
method able to investigate brain WM pathways in vivo. By using the
local water diffusion information from diffusion-weighted Magnetic
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Resonance Imaging (dMRI) images, one can infer the local orien-
tation of the underlying WM streamlines (Descoteaux et al., 2009,
2007; Tournier et al., 2007) and use it to numerically reconstruct
WM pathways. Over the years, many challenges have been tack-
led to improve this modeling technique such as Global Tractogra-
phy (Kreher et al., 2008; Mangin et al., 2013; Christiaens et al., 2015),
Probabilistic Tractography (Descoteaux et al., 2009; Tournier et al.,
vailable online 24 July 2023
053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access art
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2011, 2012), Particle Filtering Tractography (PFT) (Girard et al., 2014),
Bundle-Specific Tractography (Wasserthal et al., 2018a; Rheault et al.,
2019), or Surface-Enhanced Tractography (SET) (St-Onge et al., 2018).

The usability of WM tractography often comes from one’s ability
to filter and group streamlines into WM bundles. In this work, we
refer to filtering as any method able to remove implausible streamlines
from whole-brain tractograms (filtering methods yield implausible-
free whole-brain tractograms). Filtering will later be discussed as it
is used inside the bundle segmentation module to filter and segment
tractograms (c.f. Fig. 1b and Section 2.3). Furthermore, there exists
automated grouping methods that are 100% data-driven, fully unsuper-
vised, whilst other methods follow pre-defined anatomical definitions.
Thus, unsupervised grouping methods will be referred to as clustering
(clustering methods yield streamline clusters), whilst grouping meth-
ods following pre-defined anatomical definitions will be referred to
as segmenting (segmenting methods yield streamline bundles). The
most faithful way to extract WM bundles from a tractogram is by
asking a neuroanatomist to manually dissect bundles of interest (BOI).
Manual dissection of bundles is long and tedious, and is prone to
large inter- and intra-expert variability (Rheault et al., 2020a, 2022).
Automated methods, such as QuickBundles (QB) (Garyfallidis et al.,
2012), QuickBundlesX (QBx) (Garyfallidis et al., 2015a), Deep Fiber
Clustering (DFC) (Chen et al., 2023), RecoBundles (RB) (Garyfallidis
et al., 2018), RecoBundlesX (RBx) (Rheault, 2020), TractSeg (Wasserthal
et al., 2018b, 2019, 2020), XTRACT (Warrington et al., 2020), and
White Matter Analysis (WMA) (O’Donnell and Westin, 2007; O’Donnell
et al., 2012; Zhang et al., 2018), amongst others, have been proposed
to accelerate and increase the reproducibility of this process.

Unfortunately, these grouping methods are not void of limitations.
First, clustering methods are fully unsupervised, thus excluding prior
knowledge of each WM bundle’s class membership (QuickBundles,
QuickBundlesX, DFC). Second, even if there is a lack of consensus
in the community over each bundle’s anatomical definition (Rheault
et al., 2020b), some state-of-the-art methods do not allow an easy
modification of anatomical definitions (TractSeg, XTRACT ). In fact, if
a change in bundle definitions is needed with TractSeg (Wasserthal
et al., 2018b), a full reannotation of the training dataset is required
alongside with a complete retraining of its three neural networks. Con-
trastingly, XTRACT (Warrington et al., 2020) heavily relies on regions
of interest (ROI) drawn by expert neuroanatomists to work properly.
Those ROIs are usually hard to get and prone to inter-expert variability.
Third, methods such as WMA are impractical in a large scale context
because they rely on an affinity matrix computed using the pairwise
distance of each streamline in a whole-brain tractogram. Such methods
have prohibitive memory usage when the tractogram has more than
500,000 streamlines (Wasserthal et al., 2018b). Fourth, methods such
as RecoBundles (Garyfallidis et al., 2018) and RecoBundlesX (Rheault,
2020) require the non-trivial calibration of several parameters and
are more or less reliable in a test–retest analysis (see RecoBundles
and RecoBundlesX results in Section 3). Finally, knowing all possible
limitations of dMRI tractography (Rheault et al., 2020b), segmentation
and clustering methods are tied to the tracking algorithms’ ability to
recover hard-to-track WM bundles in the first place.

In this paper, we present FIESTA (FIbEr Segmentation in Tractography
using Autoencoders), a reliable and robust, fully automated, and easily
semi-automatically calibrated pipeline based on deep autoencoders that
can dissect and fully populate WM bundles. Thus, FIESTA is a filtering
and bundle segmentation (not clustering) pipeline whose output is
subsequently improved by an autoencoder-based generative streamline
sampling method. FIESTA allows an easy change in its bundle defini-
tions, depending on the need, with a marginal calibrating time. This
pipeline is built upon FINTA, CINTA, and GESTA methods (Legarreta
et al., 2021, 2022, 2023) that demonstrated how autoencoders can
be used successfully for filtering, bundle segmentation, and streamline
2

generation in tractography.
1.1. Related work

Over the years, many methods have been developed to ease the
interpretability of whole-brain tractograms, such as filtering meth-
ods (Legarreta et al., 2021; Maier-Hein et al., 2017; Petit et al., 2021;
Jörgens et al., 2021; Sotiropoulos and Zalesky, 2019) and clustering
methods (Garyfallidis et al., 2012, 2015a; Chen et al., 2021, 2022;
O’Donnell and Westin, 2007; Wang et al., 2011; Visser et al., 2011).
Unfortunately, filtering methods do not allow to easily target anatom-
ical regions as tractograms are not grouped in streamline bundles. On
the other hand, streamline clustering algorithms, a class of methods
designed to group streamlines with similar properties, are typically
built upon unsupervised machine learning approaches such as mixture
models, spectral clustering and hierarchical clustering. Unfortunately,
clustering methods suffer from a major drawback: they offer no control
to which cluster belongs to which WM anatomical region.

Therefore, bundle segmentation comes as a solution for this prob-
lem. It aims to give streamlines an anatomical label. Many meth-
ods have been proposed in the literature to bundle whole-brain trac-
tograms, such as TRACULA (Yendiki, 2011), TractQuerier (Wassermann
et al., 2016), or Classifyber (Bertò et al., 2021). In this work, we
will confine our reference methods to RecoBundles (Garyfallidis et al.,
2018) and RecoBundlesX (Rheault, 2020), WMA (O’Donnell and Westin,
007; O’Donnell et al., 2012; Zhang et al., 2018), TractSeg (Wasserthal

et al., 2018a,b, 2019, 2020) and XTRACT (Warrington et al., 2020).
Reference methods for this work are based on different criteria. The
main goal is to capture the representativeness of the different existing
state-of-the-art methods. RecoBundles and RecoBundlesX were selected
for their ease of implementation, and because author F.R. developed
the latter. XTRACT was selected to represent ROI-based bundle seg-
mentation methods. WMA was selected to represent methods based
on a non-physical embedding space. Finally, TractSeg was selected to
capture the power of supervised deep learning methods.

RecoBundles is a well-established method based upon atlas bundles
pre-segmented by medical experts. When a new tractogram needs to
be bundled, a streamline-based linear registration (Garyfallidis et al.,
2015b) is done between the target and the atlas tractograms, bring-
ing the tractogram and the atlas in the same space. After this co-
registration, a sequence of operations is performed for each bundle
in the atlas. First, the target tractogram is pruned to remove irrel-
evant streamlines to the current bundle of interest. Then, a local
streamline-based linear registration is performed to better match the
target anatomy. Finally, a second pruning operation is performed using
a stricter distance threshold to isolate the streamlines that have a
high shape similarity to the current bundle of interest in the atlas. All
the aforementioned steps are performed using centroids rather than
individual streamlines to speed up processing.

RecoBundlesX is an improved version of RecoBundles using many
iterations of RecoBundles over multiple atlases with different sets of
parameters. Varying parameters are (i) whole-brain tractograms Quick-
Bundles clustering thresholds, (ii) atlas bundle QuickBundles clustering
thresholds, and (iii) pruning thresholds. While being much more reli-
able than RecoBundles, this method is time-consuming since RecoBun-
dles is launched many times.

White Matter Analysis (WMA), proposed by O’Donnell and Westin
(2007), is an atlas-based bundle recognition method where streamline
classification is done in an embedding space built with spectral clus-
tering (O’Donnell et al., 2006; O’Donnell and Westin, 2005). The atlas
streamlines are represented as a point in the embedding space, where
each point is assigned to a bundle class. New tractogram streamlines
are bundled using the closest atlas centroid as the most probable
class. One drawback of the method is that it requires computing a
𝑁 × 𝑁 pairwise streamline distance affinity matrix, which is compu-
tationally prohibitive for a reasonably sized tractogram. Therefore, the
Nystrom approximation (Fowlkes et al., 2004) is done as a trade-off to

approximate the affinity matrix.
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Fig. 1. FIESTA pipeline. (a) Training of a convolutional autoencoder on raw dMRI whole-brain tractograms (WBT) with a combination of a mean squared error (MSE) loss and a
contrastive loss. A streamline is a 1D signal with 3 channels. The contrastive loss’ positive and negative pairs are based on QuickBundlesX streamline cluster memberships. (b) The
trained autoencoder is used to filter and bundle streamlines based on a k-nearest neighbors algorithm and a Euclidean distance threshold. The key idea behind the autoencoder’s
latent space is that plausible streamlines fall closer to the cleaned, filtered, and averaged bundles in the standard atlas than implausible streamlines. (c) A probability distribution
function (PDF) is empirically estimated with a Parzen estimator (Bishop, 2006) based on the embedding of each bundle and its atlas counterpart. Rejection sampling is used to
generate new streamline samples from the estimated PDF. Sampled streamlines are then filtered by checking their fit to the underlying diffusion signal, a length range, a maximum
winding angle, and a WM coverage rate, finally yielding a bundle with better spatial coverage.
ROI-based methods, such as (Zhang et al., 2010), including the
White Matter Query Language (WMQL) (Wassermann et al., 2016),
use a pre-defined atlas of ROIs to accomplish the bundle segmentation
task. ROIs are defined in a standard space and contain starting areas,
inclusion and exclusion zones, and termination areas for each bundle.
The regions are non-linearly registered to the diffusion space and used
to bundle raw tractograms. More recently, Warrington et al. (2020)
proposed the XTRACT protocol, which leverages ROI-based methods
in order to achieve an improved generalizability.

TractSeg is a state-of-the-art deep learning bundle segmentation
method. Presented over many articles (Wasserthal et al., 2018a,b, 2019,
2020), the latest version works in three steps. First, a constrained
spherical deconvolution (CSD) is used over the diffusion orientation
3

distribution function (dODF) to extract the three principal peaks from
the obtained fiber orientation distribution function (fODF). Next, peak
maps are given to three U-Net neural networks (Ronneberger et al.,
2015) yielding 𝐵 = 72 bundle segmentation maps, 2 × 𝐵 start and
end bundle segmentation maps, and 𝐵 bundle-specific Tract Orientation
Maps (TOM). Finally, probabilistic tractography is done over each TOM
within their respective bundle segmentation maps and making sure
start and end regions are respected for each streamline.

1.2. Contributions

In this paper, we present a semi-supervised bundle segmentation
method called FIESTA. This work is the natural extension of FINTA
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(Legarreta et al., 2021), CINTA (Legarreta et al., 2022), and GESTA
(Legarreta et al., 2023), which use a deep convolutional autoencoder
to project streamlines into a lower, more structured, smoother and
locally linear dimensional space to either filter, segment, or generate
WM streamlines (c.f. Supplemental section A.6 for more details). To
better structure the latent representation, we trained the autoencoder
with a contrastive loss (Hadsell et al., 2006) informed by QuickBundlesX
clustering. FIESTA uses an autoencoder to filter and bundle whole-brain
tractograms based on a given bundle atlas. It also takes advantage of
its latent space sampling strategy to synthesize new streamlines and
improve the coverage of its bundles. To avoid confusion and to be sure
to distinguish the slight method variations between previous works and
the current implemented methods, we renamed the implemented 2-
in-1 filtering and bundle segmentation method as FINTA-multibundle,
and the implemented generative method as GESTA-gmm (Gaussian
mixture model) (c.f. Section 2). This work makes the following five
contributions:

1. FIESTA leverages the power of previous fiber autoencoder meth-
ods
(Legarreta et al., 2021, 2022, 2023) and overcomes their individ-
ual limitations, yielding a pipeline able to work in an end-to-end
in vivo dMRI data analysis scenario;

2. FIESTA is more reliable than current state-of-the-art automatic
bundle segmentation methods;

3. We show that the usage of generative sampling improves the
bundle-wise volumetric reliability;

4. We show that we can train and use contrastive learning based
on QuickBundlesX clusters to build a useful latent representation
of a whole-brain tractogram;

5. Bundle definitions are easily editable in FIESTA without the need
to re-train a neural network.

2. Methods

FIESTA’s three main underlying key concepts are summarized in
Fig. 1. First, an autoencoder is used to learn a streamline representa-
tion latent space (c.f. Fig. 1a). Next, given a new tractogram and a
reference set of bundles (typically provided by a trained specialist),
FINTA-multibundle extracts false-positive-free bundles from a given
whole-brain tractogram (c.f. Fig. 1b). The tractogram is dissected by
applying a filtering procedure to every bundle of interest individually
(i.e., against all other groups, including implausible, and plausible
streamlines belonging to other bundles). Finally, GESTA-gmm popu-
lates each bundle by generating plausible streamlines supported by a
filtering process to increase the spatial coverage (Fig. 1c). FIESTA is
a software suite built upon previous works that yields WM bundles
from the concatenation of the output bundles of FINTA-multibundle
and GESTA-gmm.

2.1. Data

Five datasets were used for the development and the testing of
FIESTA — namely TractoInferno (Poulin et al., 2022), and the Human

onnectome Project (HCP) (Glasser et al., 2013, 2016) as mentioned
n Fig. 1, and MyeloInferno (Edde et al., 2023), the Alzheimer’s Disease
euroimaging Initiative (ADNI) (https://adni.loni.usc.edu), and the
arkinson’s Progression Markers Initiative (PPMI) (www.ppmi-info.
rg/access-data-specimens/download-data) for the evaluation. The
hoice of datasets was based on several criteria, such as ease of access,
ultiple time-points per subject (MyeloInferno, ADNI, and PPMI), high-

uality data (HCP), and the availability of multiple WM tracking types
TractoInferno). TractoInferno and HCP data were used for the training
f the convolutional autoencoder and early evaluation stage, while
yeloInferno, ADNI, and PPMI were employed to evaluate the reliability
4

f the pipeline. Also, TractoInferno ‘silver standard’ (Theaud et al.,
2022) bundles were used for the threshold calibration steps. HCP
subjects were also used for adjusting GESTA-gmm’s parameters.

TractoInferno (Poulin et al., 2021) is a publicly available, widely
eterogeneous database designed for machine learning purposes in
MRI tractography. It is composed of 354 subjects from 6 different
atasets acquired with 5 different MRI scanners with various image
esolutions, acquisition parameters, and subject ages. MRI acquisitions
nderwent a manual quality control (QC) process before using an
nsemble of four tracking types – namely local deterministic, local
robabilistic, PFT (Girard et al., 2014), and SET (St-Onge et al., 2018) –
efore being processed into RecoBundlesX, yielding its silver standard.
ractoInferno whole-brain tractograms were used for the autoencoder
raining (c.f. Section 2.2.1), whilst TractoInferno silver standard bundles
ere only used for the latent space distance threshold calibration (c.f.
ection 2.3.1).
MyeloInferno (Edde et al., 2023) is a non-public dMRI dataset.

e have divided the MyeloInferno dataset into 2 single time-point
ubsets and 2 five-time-point subsets. One single time-point subset,
yeloInferno-HC, was composed of 24 young and healthy control (HC)

ubjects (mean age 36 years ± 4.7 [standard deviation]; 17 women)
nd the other, MyeloInferno-MS, was composed of 21 young subjects
ith multiple sclerosis (MS) (mean age 38 years ± 6.8 [standard
eviation]; 16 women). Written informed consent was obtained from
articipants and were recruited following the ethics protocol of the
entre de Recherche du Centre Hospitalier Universitaire de Sherbrooke
Sherbrooke, Canada). Most HC and MS subjects in MyeloInferno had

time-points or more. Thus, for the creation of our 2 test–retest
ubsets, we only kept data with 5 time-points or more and excluded
ime-points above 5 for our analysis. We named those 2 new sub-
ets MyeloInferno-HC-TR and MyeloInferno-MS-TR. MyeloInferno-HC-TR
ontains 𝑁 = 18 × 5 = 90 acquisitions, whilst MyeloInferno-MS-TR
ontains 𝑁 = 19 × 5 = 95 acquisitions. Thus, the data are ideal to
valuate the reproducibility of our pipeline. All images were acquired
n a 3T Ingenia MR scanner with a 32-channel head coil (Philips
ealthcare, Best, Netherlands) with T1w images acquired with a res-
lution of 1 mm isotropic voxels and dMRI images acquired with a
esolution of 2 mm isotropic voxels, 100 gradient directions uniformly
istributed over three shells (𝑏 = {300(8), 2000(32), 3000(60)} s∕mm2)
the number of directions per shell is in parentheses), and 7 unweighted
mages. Each tractogram was an ensemble of tractograms generated
sing the TractoFlow pipeline (Theaud et al., 2020), which provided a
FT probabilistic tracking and a local probabilistic tracking that were
oncatenated. PFT tractograms were generated using interface seed-
ng with 30 seeds per voxel, while local tractograms were generated
sing white matter seeding with 10 seeds per voxel. Both tracking
ethods were constrained with a streamline length range between 20

nd 200 mm. More details can be found in Edde et al. (2023) and
n the corresponding website at https://high-frequency-mri-database-
upplementary.readthedocs.io/en/latest/index.html.

The Human Connectome Project (HCP) Young Adult dataset
Glasser et al., 2013, 2016) is a dataset of approximately 1200 sub-
ects (age range 22–35 y/o) composed of different MRI modalities
cquired on Siemens scanners. For the purposes of this project, only
he T1w and dMRI acquisitions were used. All images were acquired
n a 3T MR scanner with T1w images acquired with a resolution
f 0.7 mm isotropic voxels and dMRI images acquired with a reso-
ution of 1.25 mm isotropic voxels, 270 gradient directions equally
istributed over three shells (𝑏 = {1000, 2000, 3000} s∕mm2) and 6
nweighted images. Again, the tracking was done using the TractoFlow

pipeline (Theaud et al., 2020) based on fODF estimated using 𝑏 =
{0, 1000, 2000, 3000} s∕mm2 shells, which provided a PFT probabilistic
tracking and a local probabilistic tracking that were concatenated. PFT
tractograms were generated using interface seeding with 60 seeds per
voxel, while local tractograms were generated using white matter seed-
ing with 30 seeds per voxel. Both tracking methods were constrained

with a streamline length range between 20 and 200 mm.

https://adni.loni.usc.edu
http://www.ppmi-info.org/access-data-specimens/download-data
http://www.ppmi-info.org/access-data-specimens/download-data
http://www.ppmi-info.org/access-data-specimens/download-data
https://high-frequency-mri-database-supplementary.readthedocs.io/en/latest/index.html
https://high-frequency-mri-database-supplementary.readthedocs.io/en/latest/index.html
https://high-frequency-mri-database-supplementary.readthedocs.io/en/latest/index.html
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The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(https://adni.loni.usc.edu) was used in the preparation of this article.
The ADNI was launched in 2003 as a public–private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For this study, T1w and dMRI acquisitions
were used. All images were acquired on a 3T MR scanner from dif-
ferent vendors with T1w images acquired with a resolution of 1 mm
isotropic voxels and dMRI images acquired with a resolution of 2 mm
isotropic voxels, 114 gradient directions distributed over three shells
(𝑏 = {500(6), 1000(48), 2000(60)} s∕mm2) (the number of directions per
hell is in parentheses) and 12 unweighted images. Tracking was done
sing the TractoFlow pipeline (Theaud et al., 2020) based on fODF
stimated using 𝑏 = {0, 1000, 2000} s∕mm2 shells, which provided a

PFT probabilistic tracking and a local probabilistic tracking that were
concatenated. PFT tractograms were generated using interface seeding
with 4 seeds per voxel, while local tractograms were generated using
white matter seeding with 3 seeds per voxel. Both tracking methods
were constrained with a streamline length range between 20 and
200 mm. For our analysis we created a test–retest subset (ADNI-TR)
comprised of 23 subjects with 5 time-points each (baseline, 3 months,
6 months, 12 months, 24 months) yielding a total of 115 images. Also,
we created a single time-point subset (ADNI-HC) with 21 old healthy
subjects.

The Parkinson’s Progression Markers Initiative (PPMI) database
(www.ppmi-info.org/access-data-specimens/download-data) was also
used for this article. For this study, T1w and dMRI acquisitions were
used. All images were acquired on a 3T MR scanner with T1w im-
ages acquired with a resolution of 1 mm isotropic voxels and dMRI
images acquired with a resolution of 2 mm isotropic voxels, 64 gra-
dient directions distributed over 1 shells (𝑏 = 1000 s∕mm2) and 1
nweighted images. Again, the tracking was done using the TractoFlow
ipeline (Theaud et al., 2020) based on fODF estimated using 𝑏 =
0, 1000} s∕mm2 shells, which provided a PFT probabilistic tracking and
local probabilistic tracking that were concatenated. PFT tractograms
ere generated using interface seeding with 4 seeds per voxel, while

ocal tractograms were generated using white matter seeding with
seeds per voxel. Both tracking methods were constrained with a

treamline length range between 20 and 200 mm. 34 subjects with 3
ime-points each were used (baseline, 12 months, 24 months) yielding
total of 102 images used from this dataset.
TractoFlow (Theaud et al., 2020) was used to process HCP, MyeloIn-

erno, ADNI, and PPMI subjects, yielding PFT and local probabilistic
hole-brain tractograms, while TractoInferno authors were reached to
et access to original raw tractograms (PFT, SET (St-Onge et al., 2018),
ocal deterministic tracking and local probabilistic tracking).

.1.1. Bundle atlas
As shown in Fig. 1, standard space ideal bundles (i.e., an atlas) are

eeded as a reference for FIESTA to work properly. For the develop-
ent and evaluation of the current pipeline, we used an in-house but

et public Population Average of WM (PAWM) atlas to evaluate our
ramework (Rheault, 2021). The PAWM atlas was built in the context of
ecoBundlesX works by Garyfallidis et al. (2018), Rheault (2020) based
n ExTractor (Petit et al., 2022) and well-curated by a neuroanatomist
o finally have bundles that fit their normative shapes (Rheault, 2021).
ig. 2 presents a representation of all the bundles in the PAWM atlas.
ull names, abbreviations, and labels of bundles used in this work
re indicated in Supplemental section A.1, whilst more context on the
ethod used to generate these bundles is given in Supplemental section
5

.5.
.2. Tractogram embedding

Fig. 1a shows a summary of the autoencoder’s embedding and train-
ng scheme of the whole human brain streamlines. Autoencoders (Hin-
on and Salakhutdinov, 2006) are a type of neural network designed
o compress and reconstruct input data as faithfully as possible. They
re made of an encoder (in blue) and a decoder (in red), two 1D con-
olutional neural networks in our case. The encoder projects a sample
rom the input space to a latent space, and the decoder reverses that
peration. An undercomplete autoencoder (Goodfellow et al., 2016) is
ne whose latent representation dimensionality is smaller than that of
he input data. This forces the autoencoder to learn a latent space which
mbeds the most salient features of the input data. A well-constructed
utoencoder encodes streamlines with similar properties (i.e., shapes,
natomical location, etc.) close to each other in the latent space.

Let  = {𝑆1,… , 𝑆𝑁} be a set of 𝑁 streamlines non-linearly regis-
tered in a common space (i.e., MNI (Fonov et al., 2009, 2011) using
T1w image-based registration for the current pipeline) with 𝑆𝑖 =
[𝐬1𝑖 ,… , 𝐬𝑘𝑖 ] where 𝑘 is the number of vertices per streamline and 𝐬𝑗𝑖 ∈
R3. By making sure that 𝑘 = 𝐷 for all streamlines, with 𝐷 being a
constant, we train a 1D convolutional autoencoder on raw whole-brain
tractograms to learn a useful WM streamline latent representation. The
training loss contains two terms: an MSE reconstruction loss and a
contrastive loss to help the bundle segmentation problem.

The contrastive loss runs over pairs of samples 𝑆𝑖, 𝑆𝑗 to enforce
streamlines of the same bundle to be as close a possible in the latent
space. Following Hadsell et al. (2006), the contrastive loss is built upon
a binary label 𝑦 where 𝑦 = 0 if 𝑆𝑖 and 𝑆𝑗 have similar properties and
𝑦 = 1, if 𝑆𝑖 and 𝑆𝑗 are dissimilar. Also, let the parameterized Euclidean
distance between two streamlines be defined as

𝐷𝜃(𝑆𝑖, 𝑆𝑗 ) = ‖𝑝𝜃(𝑆𝑖) − 𝑝𝜃(𝑆𝑗 )‖2, (1)

where 𝑝𝜃 is the encoder function. The contrastive loss function is

(𝜃) =
𝑁
∑

𝑖=1
𝐶(𝜃, 𝑦, 𝑆𝑖, 𝑆𝑗 ), (2)

with

𝐶(𝜃, 𝑦, 𝑆𝑖, 𝑆𝑗 ) = (1 − 𝑦)𝐶𝑆 (𝐷𝜃) + 𝑦𝐶𝐷(𝐷𝜃). (3)

𝐶𝑆 and 𝐶𝐷 are designed such that minimizing 𝐶 w.r.t 𝜃 would result
n low values of 𝐷𝜃 when 𝑆𝑖, 𝑆𝑗 are within the same bundle and high
alues for 𝐷𝜃 otherwise. Therefore,

(𝜃, 𝑦, 𝑆𝑖, 𝑆𝑗 ) = (1 − 𝑦) 1
2
(𝐷𝜃)2 + 𝑦 1

2
{𝑚𝑎𝑥(0, 𝑚 −𝐷𝜃)}2, (4)

where the contrastive loss margin was set to 𝑚 = 1.25, as in Hadsell
et al. (2006).

Since whole-brain tractograms come with no annotation, similar
and dissimilar pairs of streamlines are determined based on Quick-
BundlesX clusters (Garyfallidis et al., 2015a) obtained with {40, 30,
20, 10} mm as input parameters. Thus, similar (or positive) streamline
pairs are taken from the same QuickBundlesX cluster, whilst dissimilar
(or negative) streamline pairs are taken from two different clusters.

Finally, the MSE reconstruction loss is defined as

(𝜃, 𝜙) =
𝑁
∑

𝑖=1
‖�̂�𝑖 − 𝑆𝑖‖

2
2, (5)

where �̂�𝑖 = 𝑞𝜙(𝑝𝜃(𝑆𝑖)) is a reconstructed streamline and 𝑞𝜙(⋅) is the
decoder. Therefore, the overall training loss is

(𝜃, 𝜙) = (𝜃, 𝜙) + 𝜆(𝜃), (6)

with 𝜆 being a hyperparameter. The hyperparameter 𝜆 was empirically
determined to approximately balance the MSE loss with the contrastive
loss on a randomly initialized autoencoder. In our case, the optimal
value was 𝜆 = 400.

https://adni.loni.usc.edu
http://www.ppmi-info.org/access-data-specimens/download-data
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Fig. 2. PAWM atlas bundles used for FIESTA development and evaluation. All symmetric bundles are joined together (left and right). Abbreviations are described in full detail in
section A.1.
2.2.1. The autoencoder training scheme
We trained the autoencoder in a train-validation-test scheme. Our

whole dataset is composed of 120 subjects randomly shuffled with an
80/20 split between TractoInferno and HCP datasets (c.f. Section 2.1).
The train/validation/test split was therefore 100/10/10. 200,000
streamlines per subject were used, with 100,000 streamlines per HCP
whole-brain tractogram (𝑁 = 2 — namely PFT and local probabilistic
tracking) and 50,000 streamlines per TractoInferno whole-brain trac-
togram were randomly sampled from each raw tractograms (𝑁 = 4 —
namely PFT, SET, local deterministic tracking and local probabilistic
tracking). In total, our dataset contained 24,000,000 streamlines. Also,
each streamline is resampled to a fixed dimensionality of 𝐷 = 256 3D
vertices and the latent space dimensionality is fixed to 𝑑 = 32.

2.3. Tractogram segmentation

Once the autoencoder is trained, one can use it to filter and bun-
dle a new tractogram. As displayed in Fig. 1b, every streamline that
ought to be filtered and segmented is non-linearly registered into the
MNI reference space using T1w image-based registration and projected
into the latent space using the encoder neural network. This is done
alongside the bundle streamlines of the atlas. A k-nearest neighbors (k-
NN) algorithm is used to assign each streamline (in the latent space) to
the majority class label among the nearest atlas streamline (also in the
latent space). The absolute Euclidean distance between the WM stream-
line, and its atlas counterpart is then compared to a pre-determined
threshold. To determine the threshold that best balances true positives
and false positives, a ROC curve was used, as suggested by Legarreta
et al. (2021), alongside manual adjustment (c.f. Section 2.3.1). Manual
adjustments is mandatory to qualitatively match atlas bundles. Thus,
if the distance is smaller than the threshold, the streamline is kept for
downstream tasks. Otherwise, the streamline is considered implausible
and, therefore, discarded.
6

2.3.1. Latent space distance threshold calibration steps
Bundle segmentation methods require a calibration to account for

each bundle’s unique shape; for example, with RecoBundles and Re-
coBundlesX, there are multiple parameters to set for each bundle.
Fortunately, FIESTA has only one threshold per bundle (c.f. Fig. 4 to see
threshold effect on bundles). For calibration, a near-optimal per-bundle
threshold is determined automatically followed by manual adjustments
to obtain the desired bundle shape (c.f. Fig. 3). Near-optimal thresh-
olds were found by equally distributing the per-bundle true positive
and false positive streamlines, using the ROC curve analysis method
presented by Legarreta et al. (2021). We used TractoInferno silver
standard (Theaud et al., 2022) bundles in the validation set as true
positive streamlines. We consider as implausible the streamlines from
the raw tractogram that are absent from the silver standard bundles. To
avoid any confusion for the latent space calibration step, the following
list explains each data used.

1. IST: Implausible streamlines from the TractoInferno validation
set;

2. SST: Silver standard streamlines from the TractoInferno valida-
tion set;

3. WBTT: Whole-brain tractograms from the TractoInferno valida-
tion set, where 𝐼𝑆𝑇 + 𝑆𝑆𝑇 = 𝑊𝐵𝑇𝑇 ;

4. PAWM: Ideal atlas of bundles comprised of plausible streamlines
(c.f. Section 2.1.1).

The bundle-wise thresholds are thus determined as follows:

1. Encode atlas bundles (PAWM) and their flipped versions (to
make the model independent of its direction) into latent vectors;

2. Encode plausible silver standard bundles (SST) and implausible
streamlines (IST) and their flipped version from the validation
set;

3. For each latent vector from the validation set (both plausi-
ble (SST) and implausible (IST)), find the closest streamline in
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Fig. 3. Threshold calibration steps where (a) atlas, silver standard, and implausible streamlines in MNI space are projected in the latent space. Near-optimal thresholds are found
by assigning all silver standard and implausible streamlines to the class of the closest atlas streamline and by balancing true positives and false positives for each bundle. (b)
For each bundle in the atlas, the inverse diagonal of the ROC curve, built from the right silver standard streamlines assigned to the current atlas bundle (interpreted as positive
streamlines) and the wrong silver standard combined with the implausible streamlines assigned to the current atlas bundle (interpreted as negative streamlines), is used to find
the near-optimal threshold. Left: near-optimal threshold for 1 bundle found at the intersection of the ROC curve with the inverse diagonal and Right: histogram of one bundle
with the 𝑥-axis giving the distance to the closest streamline in the atlas to each streamline in the silver standard (plausible) and implausible streamlines. The near-optimal distance
threshold found with the ROC curve analysis is indicated.
the atlas using a k-NN algorithm. This step forms groups of
candidate plausible and implausible streamlines with a class
label;

4. For each group of streamlines, optimize the Euclidean distance
threshold that maximizes the number of true positive streamlines
and minimize the number of false positive streamlines. Note that
during this stage, candidate plausible streamlines assigned to the
wrong class are considered implausible. This step is equivalent
to taking the threshold value at the intersection between each
ROC (bundle-wise) curve and the inverse diagonal line;

5. Qualitatively manually adjust the near-optimal thresholds, if
needed, to improve atlas bundle similarity with the validation
set bundles.

To understand the effect of the choice of threshold, we visually
inspected the shape and the quality of the resulting bundles. We set up
an experiment with a subset of the bundles from the atlas presented in
Section 2.1.1. We studied the effect of 8 uniformly spaced threshold val-
ues centered on the near-optimal threshold of the AF_L, the CC_Pr_Po,
the IFOF_L, the OR_ML_L, the PYT_L and the UF_L bundles. Fig. 4
illustrates the results of that experiment. We set the values using 20%
increments based on the ROC curves analysis thresholds. Therefore,
it is possible to observe that low thresholds seems to increase bundle
specificity at the expense of the sensitivity. On the other hand, high
7

threshold values, classifying more streamlines as positives, increase
the sensitivity at the expense of the bundle specificity. Red circles in
Fig. 4 indicate streamlines that should not be part of final bundles
based on the atlas ideal bundles. Interestingly, such streamlines are
not always present when the threshold is higher than the near-optimal
threshold. In fact, we see that spurious streamlines are still present in
the OR_ML even with a 40% threshold reduction. Thus, this analysis
shows that threshold manual adjustment is mandatory, and threshold
values based only on ROC curves analysis should not all be used as
is. In our case, for some bundles, we needed to decrease the latent
space distance threshold, thus increasing the specificity, to more closely
match, qualitatively, bundles from the PAWM atlas (c.f. Fig. 2).

2.4. Bundle coverage improvement using generative sampling ( GESTA-
gmm)

As shown in Fig. 1c, GESTA-gmm is used, after FINTA-multibundle,
to better populate each bundle. This module compensates the imperfec-
tions of the latent space-based threshold segmentation method and the
missing streamlines in the original whole-brain tractogram, especially
in hard-to-track bundles (Rheault et al., 2019). Thus, for each bundle
in the atlas, we consider the streamlines labeled by FINTA-multibundle
as belonging to the current bundle (see Fig. 1b). An input ratio 1∶1
between the number of streamlines to use from each bundle (atlas
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Fig. 4. Effect of various factors based on automated thresholds found with ROC curves analysis where a factor of 1 represents the original thresholds. Factors below 1 mean that
original thresholds were reduced, while factors above 1 mean that original thresholds were increased. Red circles indicate false positive streamlines according to atlas ideal bundles
presented in Fig. 2. Missing means that the method did not extract any streamline for a particular bundle.
and FINTA-multibundle output, c.f. Supplemental section A.3 for more
details) is specified alongside the maximum total number of streamlines
to use. The decision to estimate the latent space PDF with streamlines
from the subject bundles and the atlas bundles was motivated by the
fact that ideal bundles are built to fully cover the target anatomical
region. Therefore, missing streamlines from the original bundles can
be recovered if a portion of the streamline seeds (Legarreta et al.,
2023) for the latent space PDF estimation is based on the atlas bundles.
Then, all streamlines used to estimate the PDF are embedded with
the encoder. The PDF is empirically estimated using a Parzen estima-
tor (Bishop, 2006) over all embedded points with a Gaussian kernel.
The kernel bandwidth is automatically estimated using Silverman’s rule
of thumb (Silverman, 1986).

As described in Legarreta et al. (2023), Painchaud et al. (2020),
since streamline latent representations live in a locally linear manifold,
rejection sampling (RS) (Bishop, 2006) can be used to sample new data
from an empirically estimated PDF. Thus, giving a set of latent vectors
 with 𝐳𝑖 ∈ R𝑑 , 𝐳𝑖 ⊂  and 𝐳𝑖 = 𝑝𝜃(𝑆𝑖), our goal is to estimate a
new set of latent vectors ′ ⊄  where the new PDF of estimated
vectors 𝑃 (𝐳′) is close to 𝑃 (𝐳). As described previously, the PDF of 𝑃 (𝐳)
is unknown, and we estimate it with a Parzen estimator. Because 𝑃 (𝐳)
is difficult to sample, we sample an easier PDF 𝑄(𝐳). In our case, 𝑄(𝐳)
is a mixture of Gaussians estimated with the expectation–maximization
algorithm (Bishop, 2006). The RS procedure works as follows: one first
generate a random sample from 𝑄(𝐳) as well as a random number
𝑢0 i.i.d. of a uniform distribution between [0, 𝐾𝑄(𝐳)] where 𝐾 is a
constant. If 𝑢0 > 𝑃 (𝐳), the sample is rejected, otherwise it is accepted.

Finally, the accepted vectors are decoded to generate new stream-
lines. As described in GESTA (Legarreta et al., 2023), those streamlines
need to fit certain anatomical constraints. Therefore, we adopt the
four proposed constraints — namely a length range, a WM coverage, a
maximum curving angle, and the local streamline orientation to fODF
peak angle (c.f. Supplemental section A.2). Furthermore, we trim off the
vertices at each end of generated streamlines that overshoots the gray
8

matter with a WM mask. The final bundles used for evaluation are the
simple concatenation (without further filtering) of FINTA-multibundle
and GESTA-gmm bundles.

2.4.1. Number of generated streamlines
To assess the capacity of GESTA-gmm to generate diverse stream-

lines that ‘‘fill’’ the anatomy well, we produced saturation curves (Gau-
vin, 2016; Rheault, 2020), which plot the bundle volume with respect
to the streamline count. We expect that if adding new streamlines does
not affect the bundle volume significantly, the bundle is saturated,
i.e., it is ‘‘well filled’’. We analyzed saturation curves (Gauvin, 2016;
Rheault, 2020) of bundle volumes from the GESTA-gmm process com-
pared to the streamline count over 5 bundles based on a whole-brain
tractogram of 1 million streamlines. To generate such saturation curves,
we produced bundles with 25,000 streamlines post GESTA-gmm filter-
ing. After, we logarithmically randomly sampled with replacement 50
subsampled bundles from each bundle. The volume was then computed
for each sub-bundle. Fig. 5 presents the saturation curves for those 5
bundles — namely the AF_L, the UF_L, the CC_Pr_Po, the IFOF_L,
and the PYT_L. We see that, after 5000 generated streamlines, each
bundle volume starts to saturate and after 15,000, no real volume gain
is obtained from the generative process. Therefore, we fixed the number
of latent-sampled vectors to 25,000 prior to decoding in our experi-
ments, where about half the generated bundles had a final count of
more than 5000 streamlines. Finally, bundles with less final streamlines
were generally caused, not by a wrongful generative process, but by
imperfect WM masks or bundle atlas alignments with the underlying
standard space anatomy.

2.5. Reliability evaluation metrics

FIESTA’s test–retest reliability was assessed using the MyeloInferno
dataset according to five overlap metrics — namely (i) the voxel-
wise Dice coefficient, (ii) the weighted voxel-wise Dice coefficient, (iii)
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Fig. 5. Saturation curves of various bundles generated by GESTA-gmm showing that between 5000 and 15,000 is a reasonable amount of generated streamlines to cover the entirety
of the bundle. After 15,000 streamlines, the volume of each bundle does not increase significantly.
the voxel-wise bundle adjacency, (iv) the streamline-wise bundle adja-
cency, and (v) the streamline density correlation (Rheault et al., 2020a;
Cousineau et al., 2017; Dice, 1945). The Dice and the weighted Dice
coefficients are overlap measures between 2 bundles varying from 0 to
1 where 1 means a perfect overlap. The weighted Dice score is weighted
by the number of streamlines in each voxel. Bundle adjacency measures
are distance metrics, similar to the Hausdorff distance (Rockafellar
and Wets, 2009), which yield an average distance between 2 bundles.
Metrics are reported in mm and, while there is no cap for those metrics,
a value of 0 mm means that there is no distance between 2 bundles.
Finally, the streamline density correlation yields a Pearson correlation
between 2 bundle density maps going from 0 to 1 with 1 meaning
that those 2 bundles are perfectly correlated. Intra-subject tractography
variability was assessed pairwise, i.e., for a total of 𝐽 acquisitions
per subject, metrics were computed between images [1 → 2, 1 →

3, 1 → 4,… , 𝐽 − 1 → 𝐽 ] equaling to a total of 𝐽 (𝐽 − 1)∕2 comparisons
per bundle. Also, to gauge FIESTA’s reproducibility we computed the
intraclass correlation coefficient (ICC) over volume, and average bundle
lengths. Based on Koo and Li (2016) (Koo and Li, 2016), ICC estimates
and their 95% confidence intervals were computed based on a two-way
mixed-effects, consistency, multiple raters/measurements model (ICC
(3,k)). Implementation was done using the Pingouin statistical Python
package (v0.5.1) (Vallat, 2018).

2.6. Hyperparameters

The final fixed hyperparameters used for FIESTA were a generative
sampling of 25,000 new streamlines based on 10,000 seed points from
an atlas/subject bundle ratio of 1∶1 followed by the GESTA-gmm
filtering process. It should also be noted that, for bundles where FINTA-
multibundle was not able to give 50% of the 10,000 required seeds, atlas
bundle streamlines were used to compensate.

2.7. Methods’ comparison

To have a broad range of comparisons, we benchmarked our method
against 5 state-of-the-art bundle segmentation methods — namely Re-
coBundles (RB) (Garyfallidis et al., 2018), RecoBundlesX (RBx) (Rheault,
2020), TractSeg (Wasserthal et al., 2018a,b, 2019, 2020), XTRACT
(Warrington et al., 2020), and White Matter Analysis (WMA) (O’Donnell
and Westin, 2007; O’Donnell et al., 2012; Zhang et al., 2018). We also
compared FINTA-multibundle against FIESTA (FINTA-multibundle +
GESTA-gmm) to see the effect of generative sampling on bundles’ re-
liability. While RecoBundles, RecoBundlesX, WMA, FINTA-multibundle,
and FIESTA used the whole-brain tractogram from TractoFlow, we
used the default tracking algorithm for TractSeg and XTRACT. Also,
as XTRACT software yields bundle density maps, the evaluation was
9

done on thresholded maps with a value of 0.5% of the highest bun-
dle value. WMA whole-brain tractograms had to be downsampled to
500,000 streamlines due to algorithmic computational limitations. In
comparison, RecoBundles, RecoBundlesX, FINTA-multibundle, and FI-
ESTA whole-brain tractograms were not downsampled and used the
∼4M streamlines yielded by TractoFlow. A list of the main parameters
for each method is presented in Supplemental section A.8 alongside
their approximate computation time for a standard desktop computer.

Since the 5 bundle segmentation methods against which FIESTA
is compared do not have the same bundle names and/or definitions,
as a matter of fairness, only the similar bundles from all methods
were compared together. Therefore, 27 similar bundles are kept for
the analysis since some bundles in TractSeg, WMA, and XTRACT had
completely different definitions than that of FIESTA. All compared
bundles from each method can be found in Supplemental section A.4.
It should be noted that WMA misses the SCP bundle, while XTRACT
only shared 17 similar bundles compared to the other methods. Thus,
the global average results were computed on those 17 bundles, whilst
individual results were computed on the 27 bundles shared amongst
the method.

2.8. FIESTA qualitative evaluation

To gain a better intuition into the different tested methods, we
conducted a qualitative analysis on a random subject from the
MyeloInferno-HC-TR subset. We qualitatively compared various bundles
from the different benchmarked methods in order to understand the pit-
falls and the quality of each one of them. As one subject is not sufficient
to conclude on the bundles’ anatomical accuracy, we conducted a more
extensive qualitative assessment using the dMRIQCpy toolbox (Theaud,
2022) on the 95 individual images of the MyeloInferno-MS-TR dataset.
The qualitative evaluation was conducted using a 3 score classification
following the user guide of dMRIQCpy on the 27 similar bundles shared
amongst methods. The 3 possible scores were either pass, warning,
or fail. For each bundle, or a pair of bundles if applicable, a pass
score was given when the bundle clearly respected the anatomical
definition of the atlas, overlapped the correct brain region, and was
located in the expected hemispheric and anatomical region. A warning
score was given if the bundles respected every previous condition but
were sparsely populated. Finally, a fail score was given if any of the
previous three conditions were not respected. We decided to do this
test on a cohort of subjects with a neurological disease as a good test
to understand the behavior of FIESTA on disease subjects.

2.9. Generated fibers faithfulness

To investigate the impact of generative sampling on tractography
and the faithfulness of generated streamlines, we conducted two exper-
iments. We used the 24 acquisitions from the MyeloInferno-HC subset
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and the 21 from the ADNI-HC subset. All selected subjects were healthy
and had no diagnosed neurological disease. In the first experiment, we
aimed to evaluate the effectiveness of the 4 anatomical constraints,
especially the constraint on the diffusion signal. Since we chose an atlas
of bundles made of streamlines from young adults, we assumed that the
number of streamlines rejected based on the 4 anatomical constraints
should be greater on older adults than on younger ones. Two reasons
pushes us to this hypothesis. First, because the MNI template brain
was constructed based on young adults (aged 18.5–43.5 years) (Fonov
et al., 2011), the registration needed to bring streamlines from the
native space to the template space for FIESTA to work properly should
be more accurate on younger brains as brain structures are more
similar. Second, as the streamlines from the atlas used for our tests
were constructed from young adults, their shape should be closer to
streamlines from young adult brains. Therefore, when such data is
used to seed part of the autoencoder latent space for the GESTA-
gmm module, the estimated probability distribution should be closer
to that of younger subjects. Thus, while sampling into this distribution,
a greater percentage of generated streamlines should be accepted after
passing the 4 constraints on young subjects.

The goal of the second experiment is to assess the impact of GESTA-
gmm on the streamline-wise bundle adjacency metric between the 2
healthy populations, as this metric can be interpreted as how far 2 pop-
ulations of streamlines are from each other. The goal is to avoid having
a substantial closer streamline-wise bundle adjacency between young
and old bundles. Thus, for every subject in the MyeloInferno-HC popu-
lation, we computed the streamline-wise bundle adjacency with every
bundle of every subject in the ADNI-HC 21 subjects population. We
repeated the experiment once on the bundles segmented by the FINTA-
multibundle module, and once on the final output of FIESTA comprising
the bundles from the FINTA-multibundle module and the GESTA-gmm
module. As the number of streamlines will increase using the FIESTA
output compared to the FINTA-multibundle output, we should expect
a slight improvement in the streamline-wise bundle-adjacency, but it
must not be substantial.

2.10. Performance on disease cohorts

In order to grasp the performance of FIESTA on disease subjects,
we extended the test–retest analysis to subjects with neurodegenera-
tive diseases. Therefore, the ADNI-TR, PPMI, and MyeloInferno-MS-TR
datasets were used with their multiple time-points per subject. ADNI-
TR subjects used for this analysis included a mixture of normal aging,
MCI, and AD subjects. PPMI subjects were only composed of subjects
with Parkinson’s disease (PD). MyeloInferno-MS-TR contained subjects
with multiple sclerosis disease. All three datasets contain multiple
time-points, with 5 for ADNI-TR and MyeloInferno-MS-TR, and 3 for
PPMI. Thus, we repeated the reliability evaluation on those 3 datasets
following the same procedure presented in Section 2.5.

3. Results

3.1. Qualitative analysis

To gain insight into the different methods, we conducted a qualita-
tive analysis on a random subject from the MyeloInferno-HC-TR dataset.
ig. 6 lays out the same bundles across each bundle segmentation
ethod for a given subject. First, it is qualitatively seen that FIESTA’s

esults (which contains generated streamlines), seems to have the best
emispheric homogeneity. This is particularly true for the PYT and
he CC_Pr_Po bundles. TractSeg misses some WM streamlines on
he left PYT and the CC_Pr_Po bundles. Otherwise, TractSeg and

MA seem to output cleaned bundles with few spurious streamlines.
he major drawback of WMA comes from its inability to process the
riginal tractograms due to memory issues (∼4M streamlines in the
yeloInferno dataset for each whole-brain tractogram). RecoBundles and
10

m

ecoBundlesX seem to be the least effective methods. For RecoBundles,
the left UF is almost empty, while the left ICP is missing. The same goes
for RecoBundlesX with a completely missing ICP (left and right) and a

issing left UF. Also, comparing their SCP to that from the atlas (c.f.
ig. 2), it is seen that several of those streamlines belong to the medulla,
hich were not included in the atlas bundles. XTRACT retrieves almost
ll streamlines for each bundle. Unfortunately, XTRACT has a high
ensitivity but a low specificity for some bundles such as the AF, the UF,
nd the OR. Finally, FINTA-multibundle clusters correctly all bundles,
ut with an inhomogeneous fanning for the PYT. The only qualitative
ssue found with FIESTA and FINTA-multibundle is seen on the IFOF.
ndeed, some outlier streamlines seem to appear on the inferior part of
he bundle.

Concerning the qualitative analysis made on 95 acquisitions of the
yeloInferno-MS-TR dataset using the dMRIQCpy (Theaud, 2022) tool-

ox, all the 27 evaluated bundles over the whole dataset were given a
core of pass. Such results confirm that, qualitatively, FIESTA performs
ell on a disease cohort where all bundles are fully populated, located

n the right hemisphere and in the correct anatomical region. During
his exercise, the shape of all bundles were compared to the shape of the
undle in the PAWM atlas. All bundles presented a qualitative similar
hape to the atlas of bundles used for the development of FIESTA.

.2. Reliability analysis

Table 1 presents the results on the MyeloInferno dataset of the
verage similarity metrics for each method benchmarked over 17 sim-
lar bundles, all shared among the different methods. Quantitative
verage results show that FIESTA yielded the best Dice, voxel-wise
ice, voxel-wise bundle adjacency, and streamline density correlation
ith 0.74 ± 0.08, 0.96 ± 0.04, 0.43 ± 0.21 mm, and 0.85 ± 0.13

espectively, whereas FINTA-multibundle obtained the best streamline-
ise bundle adjacency with a value of 5.02 ± 0.54 mm. The voxel-wise
undle adjacency shows that, on average, two binary masks of the same
undle from the same subject are ∼0.5 mm apart using FIESTA. For
ach metric where FIESTA did not come up first, it was in the margin
f error of the first one. TractSeg yielded the best ICC length and ICC
olume with values of with 0.79 ± 0.05 and 0.82 ± 0.06, respectively,
hereas FIESTA yielded 0.79 ± 0.06 and 0.81 ± 0.07, respectively.
INTA-multibundle yielded the best streamline-wise bundle adjacency
5.02 ± 0.54 mm), whilst FIESTA yielded 5.24 ± 0.44 mm. Finally,
ccording to Koo and Li (2016) (Koo and Li, 2016), ICCs yielded by
IESTA show that the method has a good reliability.

Fig. 7 presents per-bundle similarity metric results of the 27 bench-
arked bundles. It should be noted that XTRACT only presents 17 bun-
les and WMA 25 (the SCP is not present). Except for the streamline-
ise bundle adjacency, where FINTA-multibundle is clearly superior,
IESTA is globally more reliable with better overall scores. The im-
rovement is particularly important over small and hard-to-track bun-
les such as the ICP, the SCP, the OR_ML or the UF. More specifically,
he streamline density correlation, the Dice score and the weighted
ice score (Fig. 7a, 7b, and 7c), show that FIESTA yields higher
ithin-bundle similarity. Fig. 7a shows that the streamline density
etween different acquisitions is systematically more correlated when
sing FIESTA than with the other methods. The voxel-wise bundle
djacency of FIESTA shows that the average distance between 2 bundle
asks of the same subject is ∼0.5 mm. Knowing that the voxel size

f the MyeloInferno dataset is 2 mm isotropic, this underlines how
eproducible FIESTA is. Finally, Fig. 7e shows that, depending on the
tudied bundle, the TractSeg streamline-wise bundle adjacency is close
o FIESTA and FINTA-multibundle, with many bundles surpassing the
roposed method, whilst never surpassing FINTA-multibundle.

According to Fig. 7e, FINTA-multibundle shows the closest scores
o FIESTA with RecoBundles, RecoBundlesX, and WMA’s being less
eproducible. In comparison, RecoBundles, RecoBundlesX, FINTA-
ultibundle, and FIESTA had about 4,000,000 input streamlines. This
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Fig. 6. Qualitative results for a subset of bundles from the different benchmarked methods from one MyeloInferno subject. N/A means that the bundle was not included in the
method, while Missing means that the method failed to extract that bundle. Lateral bundles (in both hemispheres) are shown jointly: UF, SCP, PYT, OR_ML, IFOF, ICP, and AF.
XTRACT bundles show density maps (thresholded at 0.5%). FINTA-m stands for FINTA-multibundle. Red arrows point to suspected missing streamlines or wrongly bundled.
Table 1
Average (±SD) similarity metric values and ICC for the 17 studied bundles, shared across different state-of-the-art methods for the
MyeloInferno dataset. Up and down arrows mean that higher and lower are better respectively for the studied metric. V. and S. stand for
Voxels and Streamlines. L. stands for Length. BA stands for Bundle Adjacency. The bundle adjacency streamlines and the ICC length
were not computed for XTRACT because it outputs streamline density maps instead of WM streamlines for each bundle. FINTA-m
stands for FINTA-multibundle.
17 Bundles TractSeg RB RBx WMA XTRACT FINTA-m FIESTA

Dice V. (↑) 0.65 ± 0.10 0.56 ± 0.22 0.58 ± 0.23 0.56 ± 0.11 0.64 ± 0.15 0.71 ± 0.09 0.74 ± 0.08
W-Dice V. (↑) 0.85 ± 0.09 0.78 ± 0.29 0.79 ± 0.29 0.78 ± 0.14 0.84 ± 0.14 0.94 ± 0.06 0.96 ± 0.04
B. A. V. (mm) (↓) 0.70 ± 0.45 1.65 ± 2.03 1.46 ± 2.01 0.88 ± 0.39 0.89 ± 0.63 0.51 ± 0.27 0.43 ± 0.21
B. A. S. (mm) (↓) 5.37 ± 0.92 7.82 ± 3.01 6.94 ± 2.76 6.07 ± 0.65 N/A 5.02 ± 0.54 5.24 ± 0.44
Density Corr. (↑) 0.64 ± 0.18 0.60 ± 0.30 0.64 ± 0.30 0.58 ± 0.22 0.63 ± 0.21 0.81 ± 0.15 0.85 ± 0.13
ICC L. (↑) 0.79 ± 0.05 0.55 ± 0.28 0.67 ± 0.19 0.78 ± 0.08 N/A 0.78 ± 0.06 0.79 ± 0.06
ICC V. (↑) 0.82 ± 0.06 0.24 ± 1.54 0.70 ± 0.13 0.73 ± 0.15 0.67 ± 0.17 0.80 ± 0.09 0.81 ± 0.07
might explain why WMA seems to perform poorly, as we had to down
sample the input whole-brain tractogram due to the computational cost
of the method.

According to the charts in Fig. 7b and Fig. 7c, FIESTA is less
effective for the ICP bundle. To better understand this behavior, we
further investigated the case. Fig. 8 shows the left ICP produced by
FIESTA on the subject with the poorest similarity metrics. We see that
the variability for this particular bundle is explained by the positioning
of the MRI field of view, which seems to cut at various points in
the brainstem. Therefore, the starting zones of the ICP are variable.
Despite this bundle variability, Fig. 8 shows that FIESTA is robust to
such starting zone variations.
11
To complement the previous results, Fig. 9 shows the reliability
scores with respect to bundle-wise metrics — namely volume and
average length. Following Koo and Li (2016) (Koo and Li, 2016)
guidelines, an ICC between 0.75 and 0.9 and above 0.9 are respectively
indicative of good and excellent reliability. Fig. 9a presents the ICC of
the bundle average length, which provides insight into the reliability
of each method to obtain the average bundle length values. FIESTA
outperforms RecoBundles and RecoBundlesX in most bundles. WMA
and TractSeg are more competitive than anticipated. Careful analysis
reveals that although average overlap metrics for those methods are
much worse than FIESTA, they yield streamlines with consistent lengths
across various time points. It can be seen in Fig. 7e, that TractSeg seems
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Fig. 7. Average per-bundle overlap metrics for the MyeloInferno dataset. Each metric was computed over 5 acquisitions from 18 subjects registered to the MNI152 template with
per subject pairwise comparison yielding 10 comparisons per subject. For visualization purposes, only the 27 most similar bundles across methods are shown. It should be noted
that the SCP was not present in the bundles from WMA. XTRACT also misses all CC bundles, the FPT, the ICP, the POPT, and the SCP. (a) Streamline Density Correlation, (b)
Voxel-Wise Dice Score Coefficient, (c) Weighted Voxel-Wise Dice Score Coefficient, (d) Voxel-Wise Bundle Adjacency, and (e) Streamline-Wise Bundle Adjacency. The streamline-wise
bundle adjacency was not computed for XTRACT because the software outputs streamline density volume maps instead of WM streamlines for each bundle. The legend of each
chart presents, from top to bottom, the method with the best average metric value according to Table 1. Outlier values are clipped to the bottom or top of each chart and are
displayed as small triangles. FINTA-m stands for FINTA-multibundle.
to produce a high streamline-wise bundle adjacency. The per-bundle
volume measurement results in Fig. 9b shows a similar trend with
TractSeg, FINTA-multibundle, and FIESTA having comparable results,
and TractSeg and FINTA-multibundle outperforming FIESTA for some
bundles. This might be explained by the fact that TractSeg uses prob-
abilistic bundle specific tracking instead of whole-brain tracking. But
although the TractSeg bundle-wise volume is stable through different
time-points, its test–retest similarity metrics are much worse than
FIESTA. Finally, even if some methods seem to yield higher ICC values
12
than FIESTA, most FIESTA’s ICC were higher than 0.75, thus producing
good reliability measurement (c.f. Table 1).

Table 2 presents the results of FIESTA on three disease cohorts —
namely ADNI-TR, PPMI, and MyeloInferno-MS-TR. Results show that
performances on those cohorts are similar to what were obtained on
healthy subjects, presented in Table 1. Thus, it shows the potential of
using FIESTA on a wide range of population. Also, results presented
in Table 2 shows the usefulness of using GESTA-gmm to improve most
reliability metrics. Finally, a subset of bundles (CC_Pr_Po and IFOF)
alongside the segmented lesions are presented in Fig. 10 from one
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Fig. 8. Visualization of FIESTA’s ICP across 5 acquisitions of the subject with the largest variability in scores. Each color stands for a different acquisition. The variability is
mostly explained by the MRI field of view, and not by FIESTA’s natural variability. In that case, the ICP starts at various points of the medulla (or the pons for the second image)
because the original image is cut at various points in the brainstem. Red arrows point to the medulla on the left most image.
Fig. 9. Bundle ICCs from the 27 benchmarked bundles, where (a) is the ICC based on bundle average length and (b) is the ICC based on the per-bundle voxel volume. It should
be noted that the ICC length was not computed for XTRACT because the software outputs streamline density volume maps instead of WM streamlines for each bundle. Green
dotted lines indicate good reliability (0.75) and green hard lines indicate excellent reliability (0.9). FINTA-m stands for FINTA-multibundle.
Table 2
Results of the performance of FIESTA on three disease cohorts — namely ADNI-TR (AD), PPMI (PD), and MyeloInferno-MS-TR (MS) on the 27 benchmarked bundles; Left: Reliability
results of the FINTA-multibundle module; Right: Reliability results of the FIESTA segmented bundles. FINTA-m stands for FINTA-multibundle.

27 bundles AD FINTA-m AD FIESTA PD FINTA-m PD FIESTA MS FINTA-m MS FIESTA
Dice V. (↑) 0.69 ± 0.10 0.73 ± 0.08 0.68 ± 0.09 0.74 ± 0.07 0.70 ± 0.10 0.76 ± 0.05
W-Dice V. (↑) 0.91 ± 0.12 0.95 ± 0.09 0.91 ± 0.10 0.96 ± 0.06 0.93 ± 0.09 0.97 ± 0.04
B. A. V. (mm) (↓) 0.48 ± 0.23 0.43 ± 0.21 0.53 ± 0.29 0.40 ± 0.23 0.49 ± 0.30 0.37 ± 0.14
B. A. S. (mm) (↓) 4.63 ± 0.51 5.40 ± 0.43 5.35 ± 0.48 5.35 ± 0.49 5.23 ± 0.48 5.27 ± 0.38
Density Corr. (↑) 0.82 ± 0.19 0.90 ± 0.14 0.83 ± 0.16 0.91 ± 0.11 0.87 ± 0.12 0.93 ± 0.08
ICC L. (↑) 0.95 ± 0.03 0.94 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.92 ± 0.08 0.94 ± 0.05
ICC V. (↑) 0.95 ± 0.04 0.96 ± 0.02 0.90 ± 0.06 0.91 ± 0.05 0.92 ± 0.10 0.94 ± 0.08
subject of the MyeloInferno-MS-TR dataset showing how the bundle are
able to cross MS lesions as long as the diffusion signal is not altered in
those regions.

3.3. GESTA-gmm generated streamlines faithfulness analysis

Fig. 11 presents the results showing the ratio between the streamline
count for each bundle of the generated streamlines (𝑁 = 25,000) before
the four anatomical constraints filtering and after. Thus, a ratio of 0.5
indicates that, for a particular bundle, for each remaining streamline at
the end of the filtering process, 2 must be generated by the rejection
13
sampling process. Fig. 11 shows that our initial hypothesis, stipulating
that a greater percentage of generated streamlines should be accepted
after passing the 4 constraints on young subjects, explains such results.
Indeed, for all bundles, more streamlines passed the filtering process for
the young population in comparison to the old population. Such results
suggest that the remaining streamlines are faithful to the underlying
anatomy and respect the diffusion signal for both the young and old
subjects.

Fig. 12 shows the results of the streamline-wise bundle adjacency
between the young subjects and the old subjects for each bundle.
We see that, as anticipated, the metric improves with the usage of
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Fig. 10. Lesions from one subject in the MyeloInferno-MS-TR dataset; Top: Lesions in the CC_Pr_Po bundle; Bottom: Lesions in the left and right IFOF bundles.
Fig. 11. Ratio between the streamline count for each bundle before and after the four anatomical constraint filtering. * indicates a 𝑝 value < 0.05, n.s. means non statistically
significant difference.
Fig. 12. Streamline-wise, bundle adjacency for the FIESTA and the FINTA-multibundle bundles between the young and the old healthy subjects from the MyeloInferno-HC and
ADNI-HC datasets. FINTA-m stands for FINTA-multibundle.
GESTA-gmm. On average, the streamline-wise bundle adjacency for
FINTA-multibundle was 6.08 ± 0.65 mm, whilst it was 5.98 ± 0.48 mm
when using FIESTA. However, such a small augmentation of 0.1 mm, in
comparison to the smallest ADNI voxel size (1.36 mm), indicates that
the generated streamlines that pass the 4 anatomical constraints, even
if the atlas bundles and anatomy were based on a younger population,
stay faithful to the current subject anatomy.
14
4. Discussion

Automatic bundle segmentation is an essential processing step in
tractography to isolate specific white matter pathways. In this study, we
presented a novel semi-supervised autoencoder-based automatic bundle
segmentation method called FIESTA (FIbEr Segmentation in Tractography
using Autoencoders). We compared FIESTA’s reliability to state-of-the-art
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automatic bundle segmentation methods — namely RecoBundles (RB)
(Garyfallidis et al., 2018), RecoBundlesX (RBx) (Rheault, 2020), Tract-
Seg (Wasserthal et al., 2018a,b, 2019, 2020), XTRACT (Warrington
et al., 2020), and White Matter Analysis (WMA) (O’Donnell and Westin,
2007; O’Donnell et al., 2012; Zhang et al., 2018). We found that
methods such as RecoBundles and RecoBundlesX are prone to large
intra and inter-subject variability. Bundle definitions from TractSeg are
fixed, requiring a complete retraining of the system for a different
set of bundles. From a practical point of view, it would be hardly
doable to change a specific bundle definition overnight, as one would
need to create a completely new training set to train all three U-
Nets. WMA is too computationally expensive. We had to downsample
input tractograms to 500,000 streamlines. XTRACT ROIs seem to yield
bundles with a low specificity and are hardly editable because they are
defined by 5 anatomical experts, which would be time-consuming to
change. Also, we found that FIESTA is robust to these problems present
in current state-of-the-art bundle segmentation methods. Moreover, we
showed that FIESTA is robust and reliable on various kinds of brain
populations, such as disease cohorts, as long as the diffusion signal is
not altered (or slightly altered) by such diseases.

As mentioned, the main goal of this work is to assess the reliability
of FIESTA alongside state-of-the-art automatic bundle segmentation
methods. As per many segmentation algorithms in biomedical image
analysis, we claim that reliability analysis are as important as standard
comparisons to some ground truth (or silver standard). It gives a better
insight on the robustness of the method, even if the comparison to the
ground truth is poor. Therefore, both validation methods are as im-
portant, but the reliability is often rarely reported. Results presented in
Table 1 show that FIESTA yields reliable bundles suggested by different
similarity metrics (Dice, weighted-Dice, voxel-wise bundle adjacency,
streamline-wise bundle adjacency and streamline density correlation)
in a test–retest manner over different dMRI time points. Quantitative
average results showed that FIESTA yielded the best Dice, voxel-wise
bundle adjacency, and streamline density correlation or is in the margin
of error of the best values (streamline-wise bundle adjacency, ICC
length, and ICC volume). The voxel-wise bundle adjacency shows that,
on average, two binary masks of the same bundle from the same subject
are ∼0.5 mm apart using FIESTA. This value is minimal considering
that the acquisition resolution of the dataset used is 2 mm isotropic.
Also, variability induced by registration, necessary for similarity metric
computations, did not overly affect the voxel-wise bundle adjacency
average distance. Higher density correlations obtained by FIESTA might
be explained, in part, by the use of generative sampling. Interestingly,
a closer analysis of the source of variability in FIESTA reveals that it is
mainly due to the MRI field of view positioning (c.f. Fig. 8).

ICC results are not as consistent as it is the case for similarity
metrics. It is seen that bundles from TractSeg are more reliable for
volume and average length. This is probably due to the fact that
TractSeg uses probabilistic bundle-specific tracking and not whole-brain
tracking for bundle segmentation later on. Thus, it probably yields
more consistent metrics at various time points depending on the studied
bundle. Following those results, we claim that the interpretation of any
ICCs, especially in biomedical image analysis, needs to be interpreted
cautiously. Indeed, a bad algorithm could, for example, produce, by
chance, bundles with the same volume without being in the same
anatomical region. Thus, it would yield high ICCs, with low overlap
values. Therefore, the interpretability of an ICC must always be paired,
within the context of a tractography analysis, with similarity metrics
and a good qualitative analysis.

Analysis of the generative sampling scheme shows that generated
streamlines remaining after the filtering process, respect the subject
anatomy and do not generalize to a generic ensemble of streamlines
(c.f. Figs. 11 and 12). Such behavior could be assumed to happen due to
the fact that part of the latent space is seeded using generic streamlines
based on the PAWM atlas. However, the constraint on the diffusion
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signal removes all streamlines that are not faithful to one’s subject
anatomy. Such constraint stipulates that any streamline generated using
the generative process that has a local orientation angle to fODF peak
greater than a certain angle value (i.e., 30◦) ought to be discarded.
Therefore, we would argue that streamlines that are kept after this step
should be closely similar to a streamline generated from a traditional
tractography process. Another way to see this filtering step is, instead of
tracking the streamline on the diffusion signal, we proposed streamlines
that are likely to be close to the subject anatomy, but we only keep the
ones that respect the diffusion signal.

FIESTA is not a method without flaws. First, we see that the use of
generative sampling does worsen the streamline-wise bundle adjacency.
We hypothesized that such behavior might be due to the usage of
atlas bundles as seeds for the latent space combined with the lossy
process of autoencoders. Thus, combining generative sampling with
generic seed points and another kind of tractography process might
produce variations that increase the streamline-wise bundle adjacency.
Such behavior is currently under investigation, and generative sam-
pling filtering parameters might need further adjustment. Second, the
threshold calibration, even though it can be done quickly compared
to other state-of-the-art methods, is probably the most time-consuming
process. A solution would be to get rid of the threshold method by
including a new bundle in the atlas with all whole-brain implausible
WM streamlines. Therefore, streamlines closer to the implausible bundle
would be classified as implausible. New bundle definitions could easily
be implemented, as only an ideal bundle in a standard space would be
needed for the change to be effective, without the need to find/calibrate
any threshold. As WMA uses this method for implausible streamlines,
it might be pertinent to test. Unfortunately, this method also has its
limitations, as defining implausible streamlines is an open and hard
problem to solve. Also, even if we presented a solution to find the near-
optimal threshold in Section 2.3.1, the most easy way to find the desired
threshold, whilst being the least sophisticated method, is just to test
a few thresholds manually, starting completely randomly and slowly
converging around the desired final values. Moreover, the generative
sampling method takes a long time for certain bundles. It would be
interesting to include per-bundle generative sampling parameters to
optimize the pipeline (Legarreta et al., 2023). Furthermore, FIESTA
was not developed to work properly on heavily impaired and deformed
brain anatomy (such as tumor). Such, behavior was not characterized,
and we are currently investigating the best approach for such specific
brain deformed anatomy. However, we showed that FIESTA is robust
to small white matter lesions as long as the diffusion signal is not (or
slightly) altered. Also, we showed that the brain deformation on normal
aging population does not affect the performances of FIESTA. Finally,
we can see in Table A.5 that GESTA-gmm is still a slow process, even
though it was improved for this pipeline. Thus, more optimization work
is needed for the generative process. Even if a method like TractSeg is
still faster than FIESTA, its rigid framework prevents rapid iterations
when new bundles are needed. Here, we demonstrated that it is possible
to have a bundle segmentation pipeline that works on raw tractograms
and is more reliable in a test–retest manner than state-of-the-art bundle
segmentation methods.

This work mainly focuses on the bundle segmentation of long-range
white matter streamlines, that connect distant cortical areas of the
brain. We did not assess the behavior of FIESTA on short association
fibers (U-Fibers) (Shastin et al., 2022) that connect adjacent cortical
regions. Future works will include the evaluation of FIESTA on such
fibers.

5. Conclusion

We presented a new tractography bundle segmentation pipeline
named FIESTA (FIbEr Segmentation in Tractography using Autoencoders)
that leverages the power of unsupervised and self-supervised learning
and that is intended as a solution to the limitations of current state-

of-the-art bundle segmentation pipelines. We showed that FIESTA lets
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users easily and rapidly edit its bundle definitions, and is highly reliable
in test–retest. FIESTA is more reliable than other state-of-the-art meth-
ods such as TractSeg, RecoBundles, RecoBundlesX, XTRACT, and WMA.

e believe FIESTA reaches an optimal compromise between compu-
ational burden, ease-of-use, and reconstruction quality and reliability.
hus, FIESTA might be a promising avenue as an easy and reliable way
or bundle segmentation in tractography, especially so for hard-to-track
undles.
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